Projection-invariants, Gram-Schmidt operators, and wavelets
نویسندگان
چکیده
منابع مشابه
wavelets, modulation spaces and pseudidifferential operators
مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...
Some Applications of Projection Operators in Wavelets
By rewriting the projection operator P 0 in wavelets in another formula, we obtain a characterization of dimJ V 0 (x) where V 0 is a ?-shift-invariant subspace of L 2 (R n) derived from a dual wavelet basis and prove that there does not exist a wavelet function 2 L 2 (R) such that ^ has compact support and k2Z Z (supp ^ + 4k) = R up to a zero subset of R. x1. Deenitions and Main Results In I.Da...
متن کاملG-frames and Hilbert-Schmidt operators
In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.
متن کاملSVP , Gram - Schmidt , LLL
Last time we defined the minimum distance λ1(L) of a lattice L, and showed that it is upper bounded by √ n · det(L)1/n (Minkowski’s theorem), but this bound is often very loose. Some natural computational questions are: given a lattice (specified by some arbitrary basis), can we compute its minimum distance? Can we find a vector that achieves this distance? Can we find good approximations to th...
متن کاملTrace class operators and Hilbert-Schmidt operators
If X,Y are normed spaces, let B(X,Y ) be the set of all bounded linear maps X → Y . If T : X → Y is a linear map, I take it as known that T is bounded if and only if it is continuous if and only if E ⊆ X being bounded implies that T (E) ⊆ Y is bounded. I also take it as known that B(X,Y ) is a normed space with the operator norm, that if Y is a Banach space then B(X,Y ) is a Banach space, that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasnik Matematicki
سال: 2003
ISSN: 0017-095X
DOI: 10.3336/gm.38.2.10